Biochemistry of fruit softening: an overview (2024)

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

Biochemistry of fruit softening: an overview (1)

Link to Publisher's site

Abstract

Softening is a developmentally programmed ripening process, associated with biochemical changes in cell wall fractions involving hydrolytic processes resulting in breakdown of cell-wall polymers such as cellulose, hemicelluloses and pectin etc. Various hydrolytic reactions are brought about by polygalacturonase, pectin methyl esterase, pectate lyase, rhamnogalacturonase, cellulase and β-galactosidase etc. Besides these enzymes, expansin protein also plays an important role in softening. Textural changes during ripening help in determining the shelf life of a fruit. An understanding of these changes would help in formulating procedures for controlling fruit softening vis-à-vis enhancing shelf life of fruits. In the present review an attempt has been made to coalesce recent findings on biochemistry of fruit softening.

Key words: Softening, shelf life, pectin, degradation

Full Text

The Full Text of this article is available as a PDF (238K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Abeles F.B., Takeda F. Cellulase activity and ethylene in ripening strawberry and apple fruits. Sci. Hort. 1990;42:269–275. doi:10.1016/0304-4238(90)90050-O. [CrossRef] [Google Scholar]
  • Agarvante J.V., Matsui T., Kitagawa H. Starch breakdown in ethylene-treated and ethanol treated bananas: changes in phosphorylase and invertase activities during ripening. J. Japan Soc. Food Sci. Technol. 1990;37:911–915. [Google Scholar]
  • Almeida D.P.F., Huber D.J. Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol. Plant. 1999;105:506–512. doi:10.1034/j.1399-3054.1999.105316.x. [CrossRef] [Google Scholar]
  • Anjanasree K.N., Bansal K.C. Isolation and characterization of ripening-related expans in cDNA from tomato. J. Plant Biochem. Biotech. 2003;12:31–35. [Google Scholar]
  • Arrowsmith D.A., de Silva J. Characterization of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol. Biol. 1995;28:391–403. doi:10.1007/BF00020389. [PubMed] [CrossRef] [Google Scholar]
  • Barnes M.F., Patchett B.J. Cell wall degrading enzymes and the softening of senescent strawberry fruit. J. Food Sci. 1976;41:1392–1395. doi:10.1111/j.1365-2621.1976.tb01179.x. [CrossRef] [Google Scholar]
  • Benitez-Burraco A., Blanco-Portales R., Redondo-Nevado J., Luz Bellido M., Moyano E., Caballero J.-L., Munoz-Blanco J. Cloning and characterization of two ripening related strawberry (Fragaria x ananassa cv. Chandler) pectate lyase genes. J. Exp. Bot. 2003;54:633–645. doi:10.1093/jxb/erg065. [PubMed] [CrossRef] [Google Scholar]
  • Bourne M.C. Texture of temperate fruits. J. Text. Stud. 1979;10:25–44. doi:10.1111/j.1745-4603.1979.tb01306.x. [CrossRef] [Google Scholar]
  • Brady C.J. Fruit ripening. Annu. Rev. Plant Physiol. 1987;38:155–178. doi:10.1146/annurev.pp.38.060187.001103. [CrossRef] [Google Scholar]
  • Brady C.J., Meldrum S.K., McGlasson W.B., Ali Z.M. Differential accumulation of the molecular forms of polygalacturonase in tomato mutants. J. Food Biochem. 1983;7:7–14. doi:10.1111/j.1745-4514.1983.tb00079.x. [CrossRef] [Google Scholar]
  • Brennan T., Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 1977;59:411–416. doi:10.1104/pp.59.3.411. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Brummell D.A., Labavitch J.M. Effect of antisense suppression of endopolygalacturonase activity on polyuronide molecular weight in ripening tomato fruit and in fruit hom*ogenates. Plant Physiol. 1997;115:717–725. [PMC free article] [PubMed] [Google Scholar]
  • Brummell D.A., Catala C., Lashbrook C.C., Bennett A.B. A membrane-anchored E-type endo-1,4-β-glucanase is localized on golgi and plasma membranes of higher plants. Proc. Natl. Acad. Sci. USA. 1997;94:4794–4799. doi:10.1073/pnas.94.9.4794. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Brummell D.A., Harpster M.H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 2001;47:311–339. doi:10.1023/A:1010656104304. [PubMed] [CrossRef] [Google Scholar]
  • Brummell D.A., Harpster M.H., Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 1999;39:161–169. doi:10.1023/A:1006130018931. [PubMed] [CrossRef] [Google Scholar]
  • Brummell D.A., Harpster M.H., Civello P.M., Palys J.M., Bennett A.B., Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 1999;11:2203–2216. doi:10.1105/tpc.11.11.2203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Brummell, DA, Lashbrook, CC and Bennett, AB (1994). Plant endo-1,4 β-D glucanase: structure, properties and physiological function. In: Enzymatic Conversion of Biomass for Fuels Production (Eds. Himmel ME, Baker JO and Overend RP), American Chemical Society, pp. 100–129.
  • Budelier K.A., Smith A.G., Gasser C.S. Regulation of a stylar transmitting tissue-specific gene in wild type and transgenic tomato and tobacco. Mol. Gen. Genet. 1990;224:183–192. doi:10.1007/BF00271551. [PubMed] [CrossRef] [Google Scholar]
  • Carpita N.C., Gibeaut D.M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993;3:1–30. doi:10.1111/j.1365-313X.1993.tb00007.x. [PubMed] [CrossRef] [Google Scholar]
  • Cho H.-T., Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell. 1997;9:1661–1671. doi:10.1105/tpc.9.9.1661. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Chourasia A., Sane V.A., Nath P. Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari) Physiol. Plant. 2006;128:546–555. doi:10.1111/j.1399-3054.2006.00752.x. [CrossRef] [Google Scholar]
  • Civello P.M., Powell A.L.T., Sabehat A., Bennett A.B. An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 1999;121:1273–1279. doi:10.1104/pp.121.4.1273. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Cosgrove D.J. Wall structure and wall loosening: a look backwards and forwards. Plant Physiol. 2001;125:131–134. doi:10.1104/pp.125.1.131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Cosgrove D.J. Loosening of plant cell walls by expansins. Nature. 2000;407:321–326. doi:10.1038/35030000. [PubMed] [CrossRef] [Google Scholar]
  • Cosgrove D.J., Bedinger P., Durachko D.M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA. 1997;94:6559–6564. doi:10.1073/pnas.94.12.6559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Darvill A., McNeil M., Albersheim P., Delmer D.P. The primary cell walls of flowering plant. In: Stumpf P.K., Conn E.E., editors. The Biochemistry of Plants-A Comprehensive Treatise. New York: Academic Press; 1980. pp. 91–162. [Google Scholar]
  • Domingo C., Roberts K., Stacey N.J., Connerton I., Ruiz-Teran F., McCann M.C. A pectate lyase from Zinnia elegans is anuxin inducible. Plant J. 1998;13:17–28. doi:10.1046/j.1365-313X.1998.00002.x. [PubMed] [CrossRef] [Google Scholar]
  • Dominguez-Puigjaner E., Llop I., Vendrell M., Prat S. A cDNA clone highly expressed in ripe banana fruit shows hom*ology to pectate lyases. Plant Physiol. 1997;114:1071–1076. doi:10.1104/pp.114.3.1071. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Dumville J.C., Fry S.C. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta. 2003;217:951–961. doi:10.1007/s00425-003-1061-0. [PubMed] [CrossRef] [Google Scholar]
  • Faik A., Desveaux D., Maclachlan G. Enzymic activities responsible for xyloglucan depolymerization in extracts of developing tomato fruit. Phytochem. 1998;49:365–376. doi:10.1016/S0031-9422(98)00140-X. [CrossRef] [Google Scholar]
  • Fischer R.L., Bennett A.B. Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991;42:755–767. doi:10.1146/annurev.pp.42.060191.003331. [CrossRef] [Google Scholar]
  • Forsyth W.G.C. Banana and plantain. In: Nagy S., Shaw P.E., editors. Tropical and Subtropical Fruits. Estport, Connenticut: AVI Publishing; 1980. pp. 258–278. [Google Scholar]
  • Fry S.C. The growing plant cell wall. In: Glick, editor. Chemical and Metabolic Analysis. NewYork: John Wiley and Sons; 1988. pp. 26–153. [Google Scholar]
  • Fry S.C., Miller J.G., Dumville J.C. A proposed role for copper ions in cell wall loosening. Plant Soil. 2002;247:57–67. doi:10.1023/A:1021140022082. [CrossRef] [Google Scholar]
  • Gaffe J., Tiznado M.E., Handa A.K. Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol. 1997;114:1547–1556. doi:10.1104/pp.114.4.1547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Giovannoni J.J., DellaPenna D., Bennett A.B., Fischer R.L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989;1:53–63. doi:10.1105/tpc.1.1.53. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Golden K.D., John M.A., Kean E.A. β-Galactosidase from Coffea arabica and its role in fruit ripening. Phytochem. 1993;34:355–360. doi:10.1016/0031-9422(93)80008-G. [CrossRef] [Google Scholar]
  • Griffiths A., Barry C., Alpuche-Solis A.G., Grierson D. Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J. Exp. Bot. 1999;50:793–798. doi:10.1093/jexbot/50.335.793. [CrossRef] [Google Scholar]
  • Griffith I.J., Pollock J., Klapper D.G., Rogers B.L., Nault A.K. Sequence polymorphism of Amb a II, the major allergen in Ambrosia artemisiifolia (short ragweed) Int. Arch. Allergy Appl. Immunol. 1991;96:296–304. [PubMed] [Google Scholar]
  • Gross K.C., Starrett D.A., Chen H. Rhamnohalacturonase, α-galactosidase, and β-galactosidase: potential roles in fruit softening. Acta Hort. 1995;398:121–130. [Google Scholar]
  • Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. 3. Oxford: Clarendon; 1999. [PubMed] [Google Scholar]
  • Harpster M.H., Brummell D.A., Dunsmuir P. Expression analysis of a ripening-specific, auxinrepressed endo-1,4-βglucanase gene in strawberry. Plant Physiol. 1998;118:1307–1316. doi:10.1104/pp.118.4.1307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Henrissat B., Heffron S.E., Yoder M.D., Lietzke S.E., Jurnak F. Functional implications of structure-based sequence alignment of proteins in the extracellular pectate lyase super family. Plant Physiol. 1995;107:963–976. doi:10.1104/pp.107.3.963. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hiwasa K., Kinugasa Y., Amano S., Hashimoto A., Nakano R., Inaba A., Kubo Y. Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J. Exp. Bot. 2003;54:771–779. doi:10.1093/jxb/erg073. [PubMed] [CrossRef] [Google Scholar]
  • Huber D.J. Polyuronide degradation and hemicelluose modification in ripening tomato fruit. J. Am. Soc. Hort. Sci. 1983;108:405–409. [Google Scholar]
  • Huber D.J. Strawberry fruit softening: the potential roles of polyuronides and hemicellulose. J. Food Sci. 1984;49:1310–1315. doi:10.1111/j.1365-2621.1984.tb14976.x. [CrossRef] [Google Scholar]
  • Jagadeesh B.H., Prabha T.N., Srinivasan K. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.): implication in fruit ripening. Plant Sci. 2004;166:1451–1459. doi:10.1016/j.plantsci.2004.01.028. [CrossRef] [Google Scholar]
  • Jagadeesh B.H., Prabha T.N., Srinivasan K. Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var. Variata) Plant Sci. 2004;167:1263–1271. doi:10.1016/j.plantsci.2004.06.031. [CrossRef] [Google Scholar]
  • Jiménez-Bermúdez S., Redondo-Nevado J., Muñoz-Blanco J., Caballero J.L., López-Aranda J.M., Valpuesta V., Pliego-Alfaro F., Quesada M.A., José A. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 2002;128:751–759. doi:10.1104/pp.010671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jiménez A., Creissen G., Kular B., Firmin J., Robinson S., Verhoeyen M., Mullineaux P. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta. 2002;214:751–758. doi:10.1007/s004250100667. [PubMed] [CrossRef] [Google Scholar]
  • Kang I.K., Suh S.G., Gross K.C., Byun J.K. N-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiol. 1994;105:975–979. doi:10.1104/pp.105.3.975. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Keller E., Cosgrove D.J. Expansins in growing tomato leaves. Plant J. 1995;8:795–802. [PubMed] [Google Scholar]
  • Knee M., Bartley I.M. Composition and metabolism of cell wall polysaccharides in ripening fruits. In: Friend J., Rhodes M.J.C., editors. Advances in the Biochemistry of Fruit and Vegetables. London: Academic Press; 1981. pp. 133–148. [Google Scholar]
  • Kojima K., Sakurai N., Kuraishi S. Fruit softening in banana: correlation among stress-relaxation parameters, cell wall components and starch during ripening. Physiol. Plant. 1994;90:772–778. doi:10.1111/j.1399-3054.1994.tb02536.x. [CrossRef] [Google Scholar]
  • Kramer M., Sanders R., Bolkan H., Waters C., Sheehy R.E., Hiatt W.R. Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol. Technol. 1992;1:241–255. doi:10.1016/0925-5214(92)90007-C. [CrossRef] [Google Scholar]
  • Langley K.R., Martin A., Stenning R., Murray A.J., Hobson G.E., Schuch W.W., Bird C.R. Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. J. Food Sci. Agric. 1994;66:547–554. doi:10.1002/jsfa.2740660420. [CrossRef] [Google Scholar]
  • Lashbrook C.C., Giovannoni J.J., Hall B.D., Fischer R.L., Bennett A.B. Transgenic analysis of tomato endo-β-1,4-glucanase gene function: role of cel1 in floral abscission. The Plant J. 1998;13:303–310. doi:10.1046/j.1365-313X.1998.00025.x. [CrossRef] [Google Scholar]
  • Lashbrook C.C., Gonzalez-Bosch C., Bennett A.B. Two divergent endo-1,4-β-glucanase genes exhibit overlapping expression in ripening fruit and abscissing flowers. Plant Cell. 1994;6:1485–1493. doi:10.1105/tpc.6.10.1485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Li Z.-C., Durachko D.M., Cosgrove D.J. An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta. 1993;191:349–356. doi:10.1007/BF00195692. [CrossRef] [Google Scholar]
  • Llop-Tous I., Dominguez-Puigjaner E., Palomer X., Vendrell M. Characterization of two divergent endo-β-1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Plant Physiol. 1999;119:1415–1421. doi:10.1104/pp.119.4.1415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Maclachlan G., Brady C. Endo-1,4-β-glucanase, xyloglucanase and xyloglucan endo-transglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiol. 1994;105:965–974. [PMC free article] [PubMed] [Google Scholar]
  • Maŕin-Rodriguez M.C., Smith D.L., Manning K., Orchard L., Seymour G.B. Pectate lyase gene expression and enzyme activity in ripening banana fruit. Plant Mol. Biol. 2003;51:851–857. doi:10.1023/A:1023057202847. [PubMed] [CrossRef] [Google Scholar]
  • McQueen-Mason S.J., Cosgrove D.J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995;107:87–100. [PMC free article] [PubMed] [Google Scholar]
  • McQueen-Mason S.J., Cosgrove D.J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA. 1994;91:6574–6578. doi:10.1073/pnas.91.14.6574. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • McQueen-Mason S.J., Durachko D.M., Cosgrove D.J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4:1425–1433. doi:10.1105/tpc.4.11.1425. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Medina-Escobar N., Cardenas J., Moyano E., Caballero J.L., Muñoz-Blanco J. Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence hom*ology to pectate lyase from higher plants. Plant Mol. Biol. 1997;34:867–877. doi:10.1023/A:1005847326319. [PubMed] [CrossRef] [Google Scholar]
  • Mehar H.A., Nath P. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol. Biochem. 2005;43:177–184. doi:10.1016/j.plaphy.2005.01.011. [PubMed] [CrossRef] [Google Scholar]
  • Mutter M., Beldman G., Pitson S.M., Schols H.A., Voragen A.G.J. Rhamnogalacturonan α-d-Galactopyranosylurono hydrolase: An enzyme that specifically removes the terminal non-reducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol. 1998;117:153–163. doi:10.1104/pp.117.1.153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Neela H., Yennawar L.-C. L., Dudzinski D.M., Tabuchi A., Cosgrove D.J. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. USA. 2006;103:14664–14671. doi:10.1073/pnas.0605979103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Nishiyama K., Guis M., Rose J.K.C., Kubo Y., Bennett K.A.B., Lu W., Kato K., Koichiro U., Ryohei N., Akitsugu I., Mondher B., Alain L., Jean-Claude P., Bennett A.B. Ethylene regulation of fruit softening and cell wall disassembly in charentais melon. J. Exp. Bot. 2007;58:1281–1290. doi:10.1093/jxb/erl283. [PubMed] [CrossRef] [Google Scholar]
  • Nunan K.J., Davies C., Robinson S.P., Fincher G.B. Expression patterns of cell wall-modifying enzymes during grape berry development. Planta. 2001;214:257–264. doi:10.1007/s004250100609. [PubMed] [CrossRef] [Google Scholar]
  • Palmer J.K. The banana. In: Hulme A.C., editor. Food Science and Technology-A Series of Monographs. London and NY: Academic Press; 1971. pp. 65–105. [Google Scholar]
  • Payasi A., Sanwal G.G. Pectate lyase activity during ripening of banana fruit. Phytochem. 2003;63:243–248. doi:10.1016/S0031-9422(03)00027-X. [PubMed] [CrossRef] [Google Scholar]
  • Pesis E., Fuchs Y., Zauberman G. Cellulase activity and fruit softening in avocado. Plant Physiol. 1978;61:416–419. doi:10.1104/pp.61.3.416. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Pilatzke-Wunderlich I., Nessler C.L. Expression and activity of cell-wall degrading enzymes in the latex of opium poppy (Papaver somniferum, L.) Plant Mol. Biol. 2001;45:567–576. doi:10.1023/A:1010624218855. [PubMed] [CrossRef] [Google Scholar]
  • Prasanna V., Prabha T.N., Tharanathan R.N. Fruit ripening phenomena-an overview. Crit. Rev. Food Sci. Nutr. 2007;47:1–19. doi:10.1080/10408390600976841. [PubMed] [CrossRef] [Google Scholar]
  • Redgwell R.J., MacRae E., Hallett I., Fisher M., Perry J., Harker R. In vivo and in vitro swelling of cell walls during fruit ripening. Planta. 1997;203:162–173. doi:10.1007/s004250050178. [CrossRef] [Google Scholar]
  • Rose J.K.C., Lee H.H., Bennett A.B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA. 1997;94:5955–5960. doi:10.1073/pnas.94.11.5955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Rose J.K.C., Bennett A.B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 1999;4:176–183. doi:10.1016/S1360-1385(99)01405-3. [PubMed] [CrossRef] [Google Scholar]
  • Rose J.K.C., Bennett A.B. Multiple genes that control fruit softening. Trends Plant Sci. 1999;4:176–183. doi:10.1016/S1360-1385(99)01405-3. [PubMed] [CrossRef] [Google Scholar]
  • Rose J.K.C., Hadfield K.A., Labavitch J.M., Bennett A.B. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 1998;117:345–361. doi:10.1104/pp.117.2.345. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Ross G.S., Wegrzyn T., MacRae E.A., Redgwell R.J. Apple β-galactosidase activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiol. 1994;106:521–528. doi:10.1104/pp.106.2.521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Ross G.S., Redgwell R.J., MacRae E.A. Kiwifruit β-galactosidase: isolation and activity against specific fruit cell-wall polysaccharides. Planta. 1993;189:499–506. doi:10.1007/BF00198212. [CrossRef] [Google Scholar]
  • Roswitha S., Teresa W., Karen B., Robert R. Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta. 2004;219:590–600. [PubMed] [Google Scholar]
  • Sakurai N., Nevins D.J. Relationship between fruit softening and wall polysaccharides in avocado (Persea Americana, Mill) mesocarp tissues. Plant Cell Physiol. 1997;38:603–610. [Google Scholar]
  • Sanwal G.G., Payasi A. Garlic extract plus sodium metabisulphite enhances shelf life of ripe banana fruit. Int. J. Food Sci. 2007;42:303–311. doi:10.1111/j.1365-2621.2006.01222.x. [CrossRef] [Google Scholar]
  • Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28:679–688. doi:10.1046/j.1365-313x.2001.01187.x. [PubMed] [CrossRef] [Google Scholar]
  • Schweikert C., Liszkay A., Schopfer P. Polysaccharide degradation by fenton reaction or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochem. 2002;61:31–35. doi:10.1016/S0031-9422(02)00183-8. [PubMed] [CrossRef] [Google Scholar]
  • Sesmero R., Quesada M.A., Mercado J.A. Antisense inhibition of pectate lyase gene expression in strawberry fruit: characteristics of fruits processed into jam. J. Food Eng. 2007;79:194–199. doi:10.1016/j.jfoodeng.2006.01.044. [CrossRef] [Google Scholar]
  • Sexton R.N., Palmer J.M., Whyte N.A., Littejohns S. Fruit softening and abscission in red raspberry (Rubus idaeus L. cv Glen Clova) Ann. Bot. 1997;80:371–376. doi:10.1006/anbo.1997.0465. [CrossRef] [Google Scholar]
  • Seymour G.B., Manning K., Eriksson E.M., Popovich A.H., King G.J. Genetic identification and genomic organization of factors affecting fruit texture. J. Exp. Bot. 2002;53:2065–2071. doi:10.1093/jxb/erf087. [PubMed] [CrossRef] [Google Scholar]
  • Sheehy R.E., Krame M., Hiatt W.R. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA. 1988;85:8805–8809. doi:10.1073/pnas.85.23.8805. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Smith D.L., Abbott J.A., Gross K.C. Down-regulation of tomato β-galactosidase results in decreased fruit softening. Plant Physiol. 2002;129:1755–1762. doi:10.1104/pp.011025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Smith D.L., Gross K.C. A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol. 2000;123:1173–1183. doi:10.1104/pp.123.3.1173. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Smith C.J., Watson C.F., Ray J., Bird C.R., Morris P.C., Schuch W., Grierson D. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature. 1988;334:714–716. [Google Scholar]
  • Sone T., Komiyama N., Shimizu K., Kasakabe T., Morikubo K., Kino K. Cloning and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar pollen. Biochem. Biophys. Res. Commun. 1994;199:619–625. doi:10.1006/bbrc.1994.1273. [PubMed] [CrossRef] [Google Scholar]
  • Souleyre E.J.F., Iannetta P.P.M., Ross H.A., Hanco*ck R.D., Shepherd L.V.T., Taylor R.V., Mark A., Davies H.V. Starch metabolism in developing strawberry. Physiol. Plant. 2004;121:369–376. doi:10.1111/j.0031-9317.2004.0338.x. [CrossRef] [Google Scholar]
  • Thakur B.R., Singh R.K., Handa A.K. Effect of an antisense pectin ethylesterase gene on the chemistry of pectin in tomato (Lycopersicon esculentum) juice. J. Agric. Food Chem. 1996;44:628–630. doi:10.1021/jf950461h. [CrossRef] [Google Scholar]
  • Themmen A.P.N., Tucker G.A., Griersson D. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 1982;69:122–124. doi:10.1104/pp.69.1.122. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Tieman D.M., Harriman R.W., Ramamohan G., Handa A.K. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. The Plant Cell. 1992;4:667–679. doi:10.2307/3869525. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Trainotti L., Bonghi C., Ziliotto F., Zanin D., Rasori A., Casadoro G., Ramina A., Tonutti P. The use of microarray mpeach 1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci. 2006;170:606–613. doi:10.1016/j.plantsci.2005.10.015. [CrossRef] [Google Scholar]
  • Trainotti L., Spolaore S., Pavanello A., Baldan B., Casadoro G. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol. Biol. 1999;40:323–332. doi:10.1023/A:1006299821980. [PubMed] [CrossRef] [Google Scholar]
  • Turich M.P., Hamilton D.A., Mascarenhas J.P. Isolation and characterization of pollen-specific maize genes with sequences hom*ology to ragweed allergens and pectate lyases. Plant Mol. Biol. 1993;23:1061–1065. doi:10.1007/BF00021820. [PubMed] [CrossRef] [Google Scholar]
  • Turner L.A., Harriman R.W., Handa A.K. Isolation and nucleotide sequence of three tandemly arranged pectin methylesterase genes (Accession Nos. U70675, U70676 and U70677) from tomato. Plant Physiol. 1996;112:1398–1398. [Google Scholar]
  • Vicente A.R., Saladié M., Rose J., Labavitch K.C., John M. The linkage between cell wall metabolism and fruit softening: looking to the future. J. Food Sci. Agr. 2007;87:1435–1448. doi:10.1002/jsfa.2837. [CrossRef] [Google Scholar]
  • Wakabayashi K. Changes in cell wall polysaccharides during fruit ripening. J. Plant Res. 2000;113:231–237. doi:10.1007/PL00013932. [CrossRef] [Google Scholar]
  • Wang S.Y., Jiao H.J. Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry. J. Agric. Food. Chem. 2001;49:1612–1619. doi:10.1021/jf0013757. [PubMed] [CrossRef] [Google Scholar]
  • Whitney S.E.C., Gidley M.J., McQueen-Mason S.J. Probing expansin action using cellulose/hemicellulose composites. The Plant J. 2000;22:327–334. doi:10.1046/j.1365-313x.2000.00742.x. [PubMed] [CrossRef] [Google Scholar]
  • Wing R.A., Yamaguchi J., Larabell S.K., Ursin V.M., MaCormick S. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyase of the plant pathogen Erwinia. Plant Mol. Biol. 1989;14:17–28. doi:10.1007/BF00015651. [PubMed] [CrossRef] [Google Scholar]
  • Wu Y., Sharp R.E., Durachko D.M., Cosgrove D.J. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 1996;111:765–772. [PMC free article] [PubMed] [Google Scholar]

Articles from Physiology and Molecular Biology of Plants are provided here courtesy of Springer

Biochemistry of fruit softening: an overview (2024)

FAQs

What is the biochemistry of fruit softening an overview? ›

Fruit softening is the process which occurs as a result of hydrolysis of various cell wall components including cellulose, hemicellulose, pectin and protein. The hydrolysis of these components is brought about by the action of PG, PME, PL, EGase, RG and β- galactosidase.

What is the process of fruit softening? ›

Abstract. Softening is a developmentally programmed ripening process, associated with biochemical changes in cell wall fractions involving hydrolytic processes resulting in breakdown of cell-wall polymers such as cellulose, hemicelluloses and pectin etc.

What is the biochemistry of fruit ripening process? ›

An increase in respiration, increase in ethylene production, fruit acidity changes, and changes in starch and sugar content are some major biochemical changes that occur during ripening. Tomato fruit develops coloration following a typical sequence with ripening.

What enzymes are responsible for the softening of fruits? ›

Reason: This is achieved by reducing the amount of cell wall degrading enzyme 'polygalacturonase' responsible for fruit softening.

What is the meaning of fruit softening? ›

This means that the fruit will become less firm as the structure of the fruit is degraded. Enzymatic breakdown and hydrolysis of storage polysaccharides occurs during ripening.The main storage polysaccharides include starch.

What causes fruit to soften? ›

(Source: UC Davis). Ethylene is a gaseous plant hormone that plays an important role in inducing the ripening process for many fruits, together with other hormones and signals. An unripe fruit generally has low levels of ethylene. As the fruit matures, ethylene is produced as a signal to induce fruit ripening.

What is the best way to soften fruit? ›

The classic paper bag trick is the simplest way to soften your fruit: place whatever you have in a paper bag, seal it as best you can, and wait. Check on the bag's contents after a few days. To speed things up, you can also add an apple or a banana to your paper bag.

What is the reason for the softening of fruit during ripening? ›

Final answer: Ripe fruits soften due to Partial solubilisation of pectic compounds.

Which of the following promotes softening of fruits? ›

Polygalacturonase (PG), otherwise called as pectinase is involved in fruit ripening. PGs degrades polygalacturonans present in the cell walls of plants by hydrolysis of the glycosidic bonds that link galacturonic acid residues.

What is the chemical reaction in the ripening of fruit? ›

Ethylene (C2H4) is a colorless gas that causes fruit to ripen when exposed to it. This occurs because ethylene reacts with the oxygen gas in the air to form carbon dioxide and water. These products help speed the ripening process of fruit.

What is the science behind fruit ripening? ›

The cause of fruit ripening is a natural form of a chemical synthesized to make PVC (polyvinyl chloride) piping and plastic bags—namely, a gaseous plant hormone called ethylene. For thousands of years, people have used various techniques to boost ethylene production even if they did not quite know it.

What chemical is used in the ripening of fruits? ›

Calcium Carbide (CaC2) is most commonly used for the artificial ripening of fruits. In artificial ripening, unlike natural ripening, a ripening agent is used to promote the ripening of fruits and to induce a colour change. Unsaturated hydrocarbons such as acetylene, ethylene etc.

What enzyme breaks down fruit? ›

Therefore, pectinase enzymes are commonly used in processes involving the degradation of plant materials, such as speeding up the extraction of fruit juice from fruit, including apples and sapota. Pectinases have also been used in wine production since the 1960s.

What hormone controls fruit ripening? ›

Ethylene is well-known for its role in plant age, including fruit ripening and flower and leaf senescence. Ethylene is a gaseous plant hormone that causes fruit to mature. It is abundantly synthesised in the fruits and tissues undergoing ripening and senescence, respectively.

What inhibits fruit ripening? ›

The above results showed that gibberellin inhibits fruit ripening, while exogenous ethylene only partially compensates for the effect of inhibition of gibberellin on fruit ripening. The potential impact of gibberellin on the maturation of fruit might therefore not be completely dependent on ethylene action.

What is the biochemical composition of a fruit? ›

Fresh fruits contain mainly water (81.7 - 84.9% w/w), followed by carbohydrates (4.3 - 10%), fiber (3.9 - 6.1%), protein (0.75 - 3.7%), minerals (0.63 - 1.50 g) and lipids (0.42-0.55%)9.

What are the biochemical factors in fruit development? ›

Many complicated biochemical changes occur during fruit ripening, including seed maturation, color change, abscission from the parent plant, texture softening, flavour volatile generation, wax development on skin, tissue permeability, and changes in carbohydrate content, organic acids, and proteins.

What is fruit ripening phenomena an overview? ›

Fruit ripening is a highly regulated irreversible process that involves highly coordinated, complex biochemical and physiological changes. Changes in color, texture, aroma, and flavor are some of the changes associated with ripening that increases the palatability and edibility of fruits.

What are the biochemical changes during storage of fruits? ›

Water loss: Fruits and vegetables lose water through transpiration during postharvest storage, which can lead to shriveling, wilting, and reduced quality. Softening: Fruits and vegetables undergo enzymatic degradation of cell wall components, leading to softening and loss of texture.

Top Articles
Runny pie likely due to underbaking
THE BEST Chewy Ginger Molasses Cookies - Scientifically Sweet
My Arkansas Copa
Koopa Wrapper 1 Point 0
Live Basketball Scores Flashscore
Nordstrom Rack Glendale Photos
Monticello Culver's Flavor Of The Day
Best Restaurants In Seaside Heights Nj
Craigslist Free Grand Rapids
Culvers Tartar Sauce
อพาร์ทเมนต์ 2 ห้องนอนในเกาะโคเปนเฮเกน
5808 W 110Th St Overland Park Ks 66211 Directions
Koop hier ‘verloren pakketten’, een nieuwe Italiaanse zaak en dit wil je ook even weten - indebuurt Utrecht
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
D10 Wrestling Facebook
Leader Times Obituaries Liberal Ks
Convert 2024.33 Usd
Red Devil 9664D Snowblower Manual
Booknet.com Contract Marriage 2
Conan Exiles: Nahrung und Trinken finden und herstellen
Jbf Wichita Falls
Craigslist Pet Phoenix
Toyota Camry Hybrid Long Term Review: A Big Luxury Sedan With Hatchback Efficiency
Craigslist Lewes Delaware
Hannaford To-Go: Grocery Curbside Pickup
8000 Cranberry Springs Drive Suite 2M600
Airtable Concatenate
Craigslist Panama City Beach Fl Pets
Avatar: The Way Of Water Showtimes Near Maya Pittsburg Cinemas
Dal Tadka Recipe - Punjabi Dhaba Style
800-695-2780
Publix Christmas Dinner 2022
Delta Math Login With Google
Mercedes W204 Belt Diagram
Missing 2023 Showtimes Near Grand Theatres - Bismarck
Warren County Skyward
Lichen - 1.17.0 - Gemsbok! Antler Windchimes! Shoji Screens!
Jewish Federation Of Greater Rochester
My.lifeway.come/Redeem
9781644854013
Troy Gamefarm Prices
South Bend Tribune Online
Second Chance Apartments, 2nd Chance Apartments Locators for Bad Credit
Best Restaurants West Bend
Ehc Workspace Login
Breaking down the Stafford trade
Deezy Jamaican Food
Actress Zazie Crossword Clue
Sams La Habra Gas Price
What Is The Gcf Of 44J5K4 And 121J2K6
Southwind Village, Southend Village, Southwood Village, Supervision Of Alcohol Sales In Church And Village Halls
Scholar Dollar Nmsu
Latest Posts
Article information

Author: Wyatt Volkman LLD

Last Updated:

Views: 6019

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Wyatt Volkman LLD

Birthday: 1992-02-16

Address: Suite 851 78549 Lubowitz Well, Wardside, TX 98080-8615

Phone: +67618977178100

Job: Manufacturing Director

Hobby: Running, Mountaineering, Inline skating, Writing, Baton twirling, Computer programming, Stone skipping

Introduction: My name is Wyatt Volkman LLD, I am a handsome, rich, comfortable, lively, zealous, graceful, gifted person who loves writing and wants to share my knowledge and understanding with you.